Novel Workflow Architecture based on Flow
Mutation and Rendering As A Service

I. ABSTRACT

Workflow systems is still an open area of research due to
diverse domain scenarios, response time, processing power,
storage restrictions, domain specific scenario and security
aspects. In this regard, we have identified 14 key features of
any workflow system as domain agnosticism, content based
and dynamic routing, message mutations, definition of nodes,
workflows, their reuse and distribution, flexibility in rendering,
user interface and computational processes, web adaptability,
compatibility with low end devices and internet of things,
security and ability to publish and discover functional capabil-
ities. We do a formalism based reasoning to discover a funda-
mental issue in the state of the art for lack of customizability,
as the orchestration logic which is a simple map from source
to target nodes and forces nodes to couple with routing logic.
We solve this issue through a novel concept of flow mutation to
expand the scope of routing logic to modify a message there by
making a node more thin. In addition, for user interface nodes,
we use a fast upcoming concept of rendering as a service
for interface generation. For computational nodes, a novel
scheme of process-triad for data science workflows for model,
data and control as services is introduced. The formalism
can be realized in any implementation however a proof of
concept is provided using Python/Flask for use cases for smart
campus, computer vision and machine learning processes.
In a nutshell we report here a novel workflow architecture
backed by formalism for building of highly flexible, scalable,
domain agnostic and light weight systems to provide plug-n-
play nodes, workflows and rendering and security. We hope
the developer research community considers the proposed idea

to incorporate in their workflow software systems.
Index Terms—workflow, rendering as a service, flow mutation,
micro services.

II. INTRODUCTION

Workflow management is a very standard requirement in
any organization involving administration, business or scien-
tific processes. A workflow is theoretically equivalent to a
program involving shared functions across diverse programs.
A workflow involves several steps, where each step itself
may be a complex business process. These steps or individual
processes are shared among several dozens of workflows and
their instances. The flow of a message or a snapshot of
several related messages among these processes constitutes a
workflow.

The application domain itself may be varied with different
requirements and service level agreements. The processes

range from slow and time consuming steps to real time pro-
cesses, less data to several tera-bytes of storage requirements,
novice to scientific processes and human-in-loop systems
across diverse domain in e-commerce, business to business,
defense, bioinformatics, administration and several other orga-
nization where processes are involved. There have been several
dozens of workflows systems worldwide over more than last
two decades and still newer systems are evolving.

There is a need to understand what is common across all
these systems, what is missing in common amongst the state
of the art, why is it that several systems are still evolving and
is there a way we can define and address in a formal and
theoretical setting and demonstrate by a proof of concept of
the ideas developed.

We have proposed key features (Table |I) for evaluation of
workflow systems on the basis that the majority of state of
the art systems (Table do not address at the fundamental
level the need for node independence from the knowledge of
many a workflow in which it participates while still retaining
ability to take part in decision branches. The literature mainly
focuses on distributed node objects, execution [1f], inter-node
communication mechanisms, workflow abstraction as a graph
and user interfaces. Please note: both the tables are at the end
of the manuscript in single page column setting.

Our contributions: We propose here a novel concept of
flow mutation combined with the concept of rendering as
a service to result a formalism enabling design of highly
flexible, scalable and domain agnostic workflow systems. The
formalism is generic and any contemporary technology can be
chosen to implement. We present a proof of concept imple-
mentation of the workflow architecture in Python environment
and Flask libraries. The PoC is evaluated on a set of 5
scenarios for a smart campus use case, a mimic smart city
use case, machine learning and computer vision use cases and
IoT device connectivity use cases.

Organization of the paper: The methods section provides
details on the formalism based reasoning and light weight im-
plementation of proof of concept. The results section provides
details on theoretical implications as well as evaluation details
of the proof of concept on the 5 scenarios. The conclusions
and future directions enlist the scope and limitations of the
proposed method and present out next steps.

III. METHODS

We have reported here a general purpose workflow system.
A formal representation of the system and interpretation is
provided for deeper understanding of any workflow system

and our specific modifications. The representation is agnostic
of technology and any state of the art mechanisms may be
used to deploy. For our proof of concept and initial working
model, we have implemented the formalism in Python using
Flask micro-services framework.

A. Formal representation and reasoning

Here we present a formal representation of the system and
study its capability in terms of flexibility and scalability.

1) Let M denote set of all messages, 2V <P

2) Here V is domain specific vocabulary, D is data and M
is in key-value format

3) Let N denote set of node identifiers

4) Let W denote set of workflow identifiers

5) Let By : N x M — [N x M x A] denote set of
behaviours

6) Here one message can trigger several actions, therefore
list abstraction is used

7) The symbol A denotes an action,

8) Let, A: Nx M — W x M denote purpose of the action

9) Let, R : M — M for changing contents of a message

using rendering as a service

Rendering as a service: corresponds to modification of

a message upon user interaction, m’ = R(m)

Let, Bw : W x M — [N x M] denote workflow

behaviour, to map a message to a list of nodes

Flow mutation: (3w € W,m € M),3(m’ # m) :

(n',m’) € L,L = By (w,m)

The key point here is presence of W x M — N x M

instead of W x M — N

Let Exy = {(n,m)|n € N,m € M} denote node event

store

Let By = {(w, m)|lw € W,m € M} denote workflow

event store

Letng € N, wg € W and mg € M denote no operation

node and workflow and empty message respectively

For ng, the functionality is (wg, m) = By (ng, m)

For wg, the functionality is (ng, m) = Bw (wg, m)[0]

(Note here that ng,wy are only for theoretical com-

pleteness, there are not actual function calls in any

implementation)

10)
11)
12)
13)
14)
15)
16)

17)
18)
19)

The workflow and node deamons are shown in (Algo-
rithm [I)) and (Algorithm [2) respectively. Some of the key
inferences from the node process are as here.

« Node behaviour is plug and play, i.e. By can be dynam-
ically configured

o The actions upon a given message, A can be of two types
- computational or user interaction

« Rendering as a Service: If it is user interaction type,
R(m) can be used to render a message m € M and
generate modified content

Some of the key inferences from the workflow process are
here.
« Workflow behaviour is plug and play, i.e. By can be
dynamically configured

o Content drives the routing, i.e. By (w,m), m € M
becomes critical

o Flow mutation: The workflow can modify the message,
ie.in [(n/,m')...] = Bw(w,m), Im' # m can be true

Algorithm 1 Node Process
1: Workflow Daemon:
2: By = Ew+ < wg, mg >
3: //Infinite iteration
4: while |Ew| >0 do
5. if Je € Ew : e[0] # w, then
6: Ew =FEwy —e
7: w = e[0]
8
9

m = e[l]
NL = Bw(w,m) //get list of nodes to which this
message is mapped

10: while (V(n',m’) € NL) do

11: En = En + (n/,m’) //goes to node event store
12: end while
13: end if

14: end while

Algorithm 2 Workflow Process
1: Node Daemon:
2 Ey = En+ < Ny Mg >
3: //Infinite iteration
4: while |Ey| > 0 do

5. if 3n € En : n[0] # n, then

6: En=EnN—17

T n = 77[0]

8 m = (1]

9: AL = By(n,m) //obtain a list of actions

10: while (V(n',m’,a) € AL) do

11 /lapplying action «(,-)

12: /I o can be user interaction or computational type

13: if o is user interaction then

14: m'” = R(m') //using rendering as a service

15: else

16: /Iwhen « is computational type

17: m” = x(n',m’) //where x(-,-) is a computa-

tional node

18: end if

19: (w',m") = a(n/,m')

20: Ew = Ew + (w',m") //goes to workflow event
store

21: end while

22: end if

23: end while

B. Schematic of the system

The formalism (Section [[II-A) may be realized in diverse
platforms and application technologies. A software design
perspective of the formalism is presented in the schematic

Renderer

Computational node

+add/del
o000
— @ —
outing
Node DB logic DB
Workflow —
L3

Domain DB}

Fig. 1. Schematic diagram of workflow system is depicted in this figure. Green
rectangles indicate key functional nodes for UI, Rendering, Computations,
Workflow and Routing logic. There are 4 database each for node, workflow,
routing logic and domain specific key-value information. Routing logic can
be dynamically provided. The blue and orange small circles correspond to
messages before and after modification respectively by the workflow module.

(Figure [I). The workflow system focuses on flexibility and
scalability are addressed at fundamental level of message
routing and processing. In this architecture there are two types
of nodes - (i) user interaction processes and (ii) computational
processes.

The workflows dynamically load routing logistics. This is
the plug-n-play mechanism that brings in enormous flexibility
to customize for diverse domains and at scale. A reload of the
routing logic does not require the restart of a system, it can
be done on the fly.

The routing logic modifies the message content as well,
which we called flow mutation. This novel concept of flow mu-
tation offers flexibility to control workflows across scenarios.
This also decouples a node from the knowledge of workflows
in which it is participating.

A user interface node offers a friendly graphical interface
to the end user. The interaction elements are customizable and
can be dynamically added or deleted. A schematic of the user
interface node is shown in (Figure [2).

The user interface node has the following type of interac-
tions, and can be extended based on implementation of the
formalism in any specific platform.

o Text input

« File upload

« Radio buttons

o Check boxes

o Submit buttons

e Other may be added as required in any specific imple-
mentation.

The node execute button, confirms the data entered by the
user and send the modified message to the workflow. The back-
end workflow system then processes the message and routes
the messages with or without modification to subsequent nodes
and the system continues.

A user interface node interacts with a number of back-end
modules. As the node becomes agnostic of the workflows,

execute) save ‘ reset ‘
Login ‘ [— [—
Gassron Rendering As A Service
type 1 text field

e w22 optiont () tpe4 | Ghoice 1 []
Bole 3 Option2 (@ Choice 2 [x|

u Option 3 O Choice 3 D

ser x =

Role y

Jobz

type 3 | file upload
pending
- —_—
% type 5 @ type 6 G type 7 ‘ new tab]

Fig. 2. Schematic depiction of a user interface type node. The node processes
any message characterized by user, role and job fields. The interface has
interaction elements of diverse types including - file upload of diverse types,
radio button, check boxes, text boxes and submit button. The execute button
performs message modification and submission to the workflow. There are
convenience features to do-undo and reset.

it becomes thin. A thin node still requires visualization of
content and interaction with user. This visualization as well
can be off-loaded as this is a common requirement across
nodes. We have then made, rendering as a service itself. The
sequence of interactions with backend system are shown in
(Figure [3) in a dashboard.

o STEP 1: Login. Authentication happens in this step.

o STEP 2: Selection of role and job.

o STEP 3: Visualization of the rendered message by the

Rendering Service

o STEP 4: User interaction via graphical elements

o STEP 5: Node execution

In addition, there are further options available to the user
such as,

o STEP 6: Add new/Delete/Modify jobs

e STEP 7: Add new/Delete/Modify templates

o STEP 8: Add new /Delete/Modify routing logistics

Z
50)
o
fogn 1 =
o s J]
Pending Dynamic Interaction Elements
works
Text boxes Action buttons | | File uploag
Submit buttons | | Radio buttons Multiple choice ‘
[soleet (2]
_ @
-
2 /‘;r
‘RenderlngServk:e ‘ [Newjon Plug-n-play template Templates

Fig. 3. This is a depiction of sequence of steps in a typical user interaction
node. The green rectangles indicate action modules and the numbered circles
denote the sequence of steps. The orange rectancles indicate background
modules and their relationship to the foreground interface. The detailed steps
are covered in the manuscript text.

C. Distributed workflow system

The system itself is highly distributed (Figure[d)). On a single
computer, there can be several instances of workflow system.

A Workflow System Instance

Computational
Nodes

Computational
~ Nodes
(Receiver)

Transfer
Workfiows

User Interface

Nodes Workflows

Local ‘

WiorkTow
DB

Node DB

Workfow system
instance 1

,,,,,, Workfiow system
instance M

\ /
/ N/

\ /
‘Compulem‘ ~\x~/<

Computer N ¢

/\
[\ Workflow system
) instances (multiple)

Workflow system
instances (multiple)

Fig. 4. A highly distributed workflow system is depicted here. (A) Denotes
the workflow system instance which as nodes of two types computational and
interaction type, local workflows and a transfer workflow. It has databases for
nodes and workflows. (B) Denotes one computer having multiple workflow
system instanced deployed and running simultaneously. (C) Denotes a scenario
of multiple computers, each with a multitude of workflow system instances
and inter communicating via transfer workflows and reciever nodes.

On multiple computers, the multitude of workflow system
instances can talk to each other. The inter communication
happens between a local and a remote system through use
of transfer workflows. The transfer workflows remit messages
in a receiver node dedicate in each workflow system instance
for receipt of message.

D. Provision for compensatory workflows

Some actions in a workflow need to be un-done and
exception handling is a routine requirement in any adminis-
trative or business scenario. For this purpose, compensatory
workflows need to be created. In our proposed architecture
the compensatory workflows are at par and served as any
other regular workflows by just defining the routing logic and
handling exception conditions in the routing codes.

E. Proof of concept using Python and Flask

We have implemented the formalism in Python environment
using Flask libraries for micro services. A schematic view
of the framework is shown in (Figure [5). Rendering service
is provided as a function inside views.py file. Templates are
stored in a template database, out of which one selected and
loaded by the rendering service. The render service uses Flask
render_template API to generate HTML by processing input
JSON objects. The file process_wf.py executes routing logic,
which is the workflow engine. It can load on the fly routing
codes. The exclusive schematic for workflow engine is shown
in (Figure [6). The process_wf.py fetches the routing codes
and the corresponding services functions and modifies the jobs
and messages. The modified jobs are deleted from workflow
database and inserted into the node database.

IV. RESULTS

We have introduced a formal representation of a workflow
system to include the following concepts -

render template service()
Get (emp\L{es

\Render job

L o
Fetch templates | fe’rﬁpme?r-
from DB

|08

Render template

views.py

Fetch pending jobs
e pending |

- =

Routihg Logic

Modify message

Add text, checkbox,
dropdown, radio button
or file

process_wl.py

N |
Pollformsg | ——— |, Removefrom Node DB Execute Node
- Workflow DB and insert in Workfiow DB

Fig. 5. This figure depicts modules in the proof of concept system built using
python and flask libraries. The user interaction components are shown in green
colour. The HTML box corresponds to user visualization and interaction with
graphical elements. Databases for node, workflow and templates are shown
as cylinders. Arrows indicate flow of data or next steps. The annotations on

top of arrows denote specific relationships.

,,7-———{ process_workflow py Je——_

i N
Import i\ 2. Import routing logic as
corresponding / \ conditions.py

/ senice functions /

SERVICES
oAcaderics / X
oCourse registration / \
oAdd drop forms / N\
olnvigilation 1. Get jobs Tr})m
oHTRA forms workflow queue"@nd
delete \

/
4. Insert the /
#Genetic Algorithm modified IDP
eSmart campus /
eAnnotator /
eSmart traffic management
eloT scenario

[N [al
Node DB /‘ [Wo(kﬂow

Fig. 6. This figure depicts the process_wf.py
Databases for node and workflow are shown as

~

\

Corresponding routing
logic
sAcademics:
oCourse registration
oAdd drop forms
clnvigilation
oHTRA forms
eSmart campus
sAnnotator
eSmart traffic management
sloT scenario

>

module built using python.
cylinders

o Formalism of Flow Mutation - a novel concept, where

router modifies or mutates the me
to the node

ssage before delivering

o Flow mutation results in plug-n-play of workflow routing

logic

o Formalism of condition based routing where target node
is determined based on message fields and their values
o Formalism of node actions and rendering as a service

for user interaction type nodes

« Event queue, node queue for continuous flow of data in

the system

o The formalism offers highly scalable and light-weight

architecture to create workflows

for any problem sce-

nario involving concept of messages and steps between

processes

o We therefore have a system where workflow itself can
be dynamically configured and deployed in the runtime
without interrupting the execution of the system

o The formalism is very generic and can be realized in any
contemporary technology of choice.

A. Lightweight implementation

The formalism in (Section[[II-A) can be realized in any state
of the art web services environments. However for demonstra-
tion purposes and use cases, we have implemented in python
using flask micro-services framework and tested it for smart
campus and machine learning workflow scenarios. The system
is very lightweight can be executed on low end devices such
as raspberry pi in addition to server grade execution. (20 lines
of code,less than 1IMB of RAM required). The user interface
is flexible (Figure [2) where rendering can also be obtained
from other systems. Therefore we have an algorithm which
is general purpose and domain agnostic workflow algorithm
suitable for both high end computational infrastructure to even
low end IoT devices.The proof of concept implementation
is light weight which enables edge IoT devices to run mini
workflows and act as mini nodes and participate in a larger
workflow system

In this set up, the nodes are just identifiers logged into the
node table. They are available as soon as messages are written.
However authentication is provided to login for nodes that are
newly added. We therefore have a system where the nodes can
be published and consumed in other workflows. Micro services
framework allows for decentralized execution of nodes and
workflows in a multi-computer scenario. The communication
between micro services is through micro service URL mecha-
nism or any other custom mechanism as well for interaction
among services.

B. Novel architecture - Messaging mutation by coordinator
and Rendering as a service

We present an architecture of the workflow system where
nodes and workflows communicate messages (Figure [T). The
concept of workflow system is not new and it has been there
since more than a couple of decades. However there are several
dozens of systems in the state of the art and still even more
are being developed.

We have studied why there is proliferation of systems if one
major type of architecture is suitable. It is understandable that
there are several business scenarios that demand different level
of performance, reliability, scale and storage requirements.
However, there can still be one major workflow system that
can cater to several scenarios with a common kernel code but
applications can be many.

We discovered that the answer lies deep in the way the
orchestration of workflows is carried out.

There have been several workflow systems till date that
employ node and workflow daemons. The orchestration has
also been a standard concept where from node to a fo node
mapping is maintained. The notion of orchestration in the state
of the art is close to that of a postman concept. A postman
does not open a letter and examine its contents, it focuses
on deliver of the contents. It is the duty of the household to
process the contents of the letter and in this case, the node
has to interpret the contents.

If a node is participating in multiple workflows, then
corresponding to each one, there should be a piece of logic

Source Node

Orchestrator
Postman

Target Node

Higher Complexity
of Nodes

‘ Message W

Our method-
Coordinator

Target Node(s)

Flow Mutated W
Message

| Lesser Complexity
of Nodes

Kn of Vi ion
WO (f des)

Fig. 7. A depiction of the flow mutation concept. The present workflow
systems consider a router as a postman type there by leading to higher node
complexity. The figure depicts a complex node coupling with routing logic
and rendering. The figure depicts the effect of decoupling a node with routing
logic and making it a coordinator type and allowing flow mutation. A user
interface node is processed by the concept of rendering as a service where
interface itself is dynamically generated.

Router Modifies
Content
ya
/
/
‘ 7 Pugnpley D ¢ Plugr»play

SlmpleNodes .\ \\RDWE/ \Noi\
4% /—;W\ Flosbily S‘ﬂ*s’“m d

amcslmty
|

Ii
‘ - m

Microservices)

‘\\ e \ﬂemg/ o Procedures |
L

Rendering as a Service
(for Ul nodes)

Knowledge of
workflows

Visualization
(for Ul nodes)

Rendering as
a Senvice

Routing logic
in Router

Computational
Nodes
/
//

Fig. 8. A depiction of concepts and their interrelated influence in the workflow
system. Each oval indicates a process or concept. An edge is drawn from one
to another if there is a positive effect from source to target. The green ovals
indicate major contribution of the proposed system. We can observe that all
the concepts lead to a stable, flexible and scalable architecture.

inside the node. This increases the complexity of a node and
its scalability is at stake. However, in our architecture, we
upgrade the postman level orchestrator to a coordinator. The
coordinator not only looks at the message, it also modifies it
as required (Figure [7). The node becomes so simple that, a
typical user interface node needs to just render action fields
to a user. This enables rendering itself as a service.

In the formal representation, the orchestration logic can
modify the content (Section [[lI-A] Point [T3)) leading to plug-
n-play of workflows. In the proposed architecture there are
three main aspects - (i) routing logic modifies the message,
(ii) rendering as a service and (iii) two types of nodes. These
aspects combined with micro services framework and plug-n-
play workflow and node models, lead to a highly customizable
workflow system (Figure [g).

C. Rendering as a service

The service for rendering offers rich types of interface
elements such as (i) file upload, (ii) text boxes, (iii) radio
buttons, (iv) check boxes and (v) submit buttons (Figure |Z|)
These interaction elements can be dynamically added as the
message flows through the workflow system. We therefore
have a mechanism where each message comes with its own
rendering template as an attribute for consumption by graph-
ical nodes.

The first study involves an example of a smart campus
scenario where students enrol for courses and later change
their decision is depicted in (Figure [9). The scenario is as
follows—

o STEP 1: First, the academic section logs in using their
username and password. The corresponding dashboard is
displayed.

o STEP 2: The academics can add a new job for add/drop
course from the preexisting templates. In this job, the
academics can add an empty add/drop course PDF form.

o STEP 3: On execute, this job is sent to all the students.

o STEP 4: Now, students can login and see add/drop course
job and the empty add/drop form that the academics has
sent to them. Students can fill this PDF form with the
details of courses, corresponding instructors and other
information along with their signature. The students also
have to enter the course ID for which the corresponding
instructor’s signature is required.

e« STEP 5: On execution, the job will be sent to that
corresponding instructor.

o STEP 6: The instructor can now login and see the pending
add/drop jobs from the students. The instructor can verify
the PDF form signed by the student and upload his/her
form after signing it. On execute, this job will be again
sent to the student.

o STEP 7: The student can now only verify the add/drop
PDF form. After verification, the student can now edit the
course ID again and send this form to another instructor
as needed.

e« STEP 8: It is to be noted that the student can send
this form to his/her faculty advisor at any time. By
default, this option is given as 'NO’. After all the course
instructor(s) sign the add/drop course PDF form, the
student can now select “YES’ for sending it to the faculty
advisor.

¢ STEP 9: On executing, the job will be sent to the student’s
faculty advisor.

o STEP 10: Finally, the faculty advisor checks the PDF
form signed by the student and the course instructor(s),
signs it and executes the job. This job is sent to aca-
demics. Under the role, add/drop course forms, academics
can see all the students’ forms.

D. Computational nodes

The system is experimented for application in scenarios
where nodes are computational nodes. One of the scenario is a

@ @
& 7
Login & Dashboard ,| Create a Template
Academics Add/Drop Course

&
@

Student receives it

and sends to next

course instructor j
—

Students upload _) '
= | adceddroppec courses witn |, ((4) | Send an emply iemplate(pct
(5) | their signature and fl irst oo b
=
-

course instructor details students
(10) Academics
——»| receives signed
form

Fig. 9. This figure depicts steps in the scenario for course add and drop.
There are 10 steps, which are described in the main text.

@
Annotefion Model Pool
Senvice Senice
70

User Interface
Service

o

Student recsives form (9)
signed by all course &
nstructor and sends it
‘o faculty advisor

=
Instructor j signs ®

the form and -
upload t

Faculty advisor
»| acknowledges the
form and signs it

A

Model Service Data Service
|)
Controller Service
©)
Car data faed Edge Analytics Prediction or Dala Generalor
Service Serviee Retrain Service Senvice
[
"\ Ly
Tinaby Nets
Service

Fig. 10. Computational node as a service. The rectangles denote service
components and the central circle denotes the workflow service. The parts of
this figure (A) - general framework involving model, data and control; (B)
application to digital document annotation as a service; (C) application to car
feed analytics as a service and (D) application to data generation for building
stable models as a service.

machine learning workflows where model, data and controlling
logic are three components (Figure [I0). We have experimented
with three types of computational nodes in machine learning
scenario.

1) General framework of machine learning models - Model
Service, Data Service, Control Service: In a machine learning
modeling scenario, the models perform mainly two types of
tasks - prediction and training. The code for a model may
be very particular to a scenario in question and is tightly
coupled with the libraries, the hardware and the data set used.
Moving a model from one system to another for the purpose
of using workflow facilities is a challenging scenario. In this
regard, model itself is provided as HTTP service. The post
methods along with meta-data such as prediction or re-train
flags indicate action items for a model.

The data itself is a major component of a machine learning
system. The data may be a sampled version, fresh one or
the old one, synthetic data or filtered according to certain
conditions as dictated by the domain. The best way to deal
with data is to provide data itself as a service.

The third important component in a machine learning model
is the control logic. The communications between the model
and the data. The predictions, processing the output confidence
scores, generating new data, retraining a model on the data

Kafka Consumer

i) Kafka Producer Video Stream
Kafka Topic - ¢ Kafka Topic - ¢1 Kafka Topic - ¢1

Kafka Consumer
Kafka Topic - ¢3

Kafka Producer Video Stream Kafka Consumer
Kafka Topic - c2 Kafka Topic - c2 Kafka Topic - c2

184

Kafka Producer Video Stream
Kafka Topic - ¢3 Kafka Topic - ¢3

| Worifiow Computational Node | D& Tmage
Car Counts < 20 Car Counts 9
/| Location | #Location
Node Alert —
Location

Fig. 11. This figure depicts a ’toy’ use case of traffic monitoring with
cameras and computer vision. The idea is to use Apache Kafka for reliable
communication and workflow nodes and servers to run computer vision
algorithm and decision logic.

i

and other aspects of coordination themselves involve multiple
steps. In this regard, controller is provided as a service.

This architecture has similarity to Model-View-Controller
(MVC) architecture, however, the model in the MVC corre-
sponds to data-model, view corresponds to user interface and
the controller corresponds to business logic. The workflow
formalism and the microservices framework allow for simpli-
fying the scenario for a data science scenario by 3 fundamental
services for model, data and control logic.

The second system involves evaluation of computational
nodes fo demonstrate the system for diverse use cases in-
cluding smart campus, computer vision and loT scenarios.
The formalism is domain agnostic and we have successfully
experimented for the ability to customize the communication
platform using an example of Apache Kafka (Figure [IT). We
have evaluated the system for integrating with a reliable mes-
sage passing mechanism such as Apache Kafka. The scenario
was a toy set up involving three cameras each having its own
identifier and they send image data to a centralized storage.
However the communication happens using Apache Kafka
based producer, consumer and topic mechanisms. The images
are processed by any popular computer vision algorithm for
object detection such as Yolo [2] for detection of any type of
vehicles in the image, in this toy set up, we have considered
’cars’. The computer vision algorithm is run inside a node as
a background process that polls for availability of messages
in the node queue. The algorithm determines number cars and
sends to the workflow. The workflow then decides based on a
user threshold and sends the resultant message to either node
ignore or node alert. The node alert would then send an SMS
and do follow up action to alert a user such as police staff.

2) Examples of computational codes: The third system
involves providing digital document annotation as a service to
unify the efforts across several optical character recognition
systems. In our system, there are multiple models built for
various annotations. In (Figure [T0] B) the three nodes - (i)
annotation as a service, (i) model building and pooling as
a service and (iii) the user interface as a service. This work

T UpT o Tl XU FTIT T aUTINUEBTRAT TN | s
;iﬁ!ﬂss{‘[}i’nﬂgsogumrrr;uﬂ(Tné:g”L,-EXBH-HQ h

Ol AT L AP LTt A ANATATeaTH 1T 0D
PRI RN e N R L T R RN
-

ST T W T kg B EERES EERY R]

-

U L e AT g M3 lgdosinfreadagqany

Mﬂaﬂwaamﬂ ’@_.‘;\J‘T“Q?OY”.!SQVﬂ'GvNQ'T
WTRAATRT kD BdDAGr 73R ITIFd8agivel aTd

NETdL=aTEne s T vTETURSITHUSTAT A G i TH L L g

o e BUILD MODEL

Fig. 12. An image of the document with text is shown. The interface provides
for drawing rectangular regions and provide text labels. There is an option to
build models and auto annotate.

is involving and is communicated elsewhere however, it is
only briefly stated for illustration purposes. A description
of annotation front end interface is shown in (Figure [12).
The front end provides user interaction that captures image
sub-regions and their labels. The back-end machine learning
model trains multiples models for different sub-region and
label pairs. These models are used for prediction of labels for
sub-regions in a new document. The communication between
front end, back-end machine learning model and controller
logic is realized via the workflow system. The system itself is
simple due computational nodes and communication of image
file paths. However, our intention is to present the usefulness
of the same workflow system that was able to cater to the
needs of a data science scenario.

The fourth system involves dealing with analytics modules
running on edge device and rendering modules running on
remote node as services. The car OBD 2 scanner feeder
service collects photographs of a location at regular intervals.
The analytics node running using scikit-learn libraries on
Raspberry Pi board determines the driving profile and generate
predictive text. The output of the algorithm is sent to the a
remote node in a laptop computer using transfer workflow.
The profile is presented to the end user using interaction type
node on the laptop computer (Figure [I0] C) and (Figure [T3).

The fifth system involves machine learning based generation
of synthetic data for augmentation to increase robustness of
any machine learning model. As a model goes through re-
training, the performance on the previous data diminishes.
It is prohibitively costly to maintain all of the data. In this
regard, [3]] genetic algorithm that generates data provided as
a service. The model that performs prediction as well as goes
through retraining is provided as a service. The communication
between the model and the genetic algorithm are abstracted
as controller service (Figure [I0] D). We therefore have a
system where compute nodes are headless and execute in the
background. (Figure [T4))

- Profiling and
(’b Bluetooth | File Receiver Anal ytwgs
Car OBD Il Scanner - Computaticnal C |
@ | Node omputational
; [Node
\ Raspberry Pi + Fython,Flas, SKeam fbvary \
m Ul Visualization
| Node {

@ Wordow) \E

NodeDB

=
L ;('Reﬁ;e) Transter | T ~(Edge) —
Node DB g Workflow - 7@_ — Workflow DB A
Readings File

(_ Reading Analysis

Fig. 13. Communication between edge Raspberry device and the remote
laptop device for workflow sharing is demonstrated here. The OBD 2 scanner
connected to the car generates data about various sensors and is received by
node on the edge device. The analytics node runs on the edge itself. The
report of analysis is transferred to a node on the remote device which renders
the information to the end user. The sequence of steps are shown numbered
over the edges to indicate information flow among the connected entities.

&
1 ™ B,
L Work fe\k'/

Py ey
) | fow s

(o)
GAService |, Start raining for a pallituar ciass -, Model Service

Node e " Node
et [
G ./ \eﬂ““age "/
A 4 et
Genefated Images after ah
specified no. of generation, Retraip “\]:/“
Fitness of population score,
Retrain'yes™ /™ p —Msg: Start Session
[T / |3 |Number of generation: 100 (say)
\ ’ T dlass= 0(say)
| Controller
Node
—1
[]
_ 4
@
(2) | Addatemplate: GA
Do ‘ | Node: Controller

Fig. 14. A depiction of the Genetic Rehearsal Algorithm as a service.
Rectangle indicates nodes. Arrow indicates flow from one node to other node.
Circles in the figure indicates the steps of flow from one node to other node.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We present here a formalism for representation and study
of workflow systems at the fundamental level. The formalism
offers highly scalable and light-weight architecture to cre-
ate workflows for any problem scenario involving concept
of messages and steps between processes. In the proposed
system, a workflow itself can be dynamically configured and
deployed in the runtime without interrupting the execution of
the system. We introduce a novel concept of flow mutation in
the formalism where the routing logic can modify the message
before delivering it to a node. This offers theoretical power
to decouple a node from the routing logic making it very
light weight. We then introduce rendering as a service for
user interface type nodes which are already made thin by
flow mutation concept. The formalism may be realized in any
contemporary technology of choice as demanded by a domain.
We have presented a proof of concept using Python and Flask
libraries. The system is scalable to execute on diverse levels
of hardware from high end computers to even low end Iot

devices. Low end edge devices can run simple workflows
and simple nodes and transfer data to other remote nodes
for any higher end calculations. In our PoC implementation
any node can be published and discovered by including its
identifier in the workflow messages. The nodes and workflows
may be distributed across systems and can be run on local
machines in a secure way. Communication between nodes
and workflows happens through micro service invocations
making the system extremely flexible and adaptable. We have
evaluated the usefulness of the system on a set of five diverse
scenarios of (i) smart campus use case, (ii) traffic camera
connectivity via Apache Kafka use case, (iii) car analytics
through Edge level Raspberry Pi to Remote laptop use case,
(iv) computer vision for digital document annotation use case
and (v) machine learning model retraining and data generation
use case. The domain knowledge is just limited to data files
and routing logic in all the 5 example scenarios. This shows
the usefulness of our formalism to build truly domain agnostic
workflow system.

Future directions: Integration of the workflow system
with contemporary block-chain technology and name based
routing protocols to go further into device factors at scale.
On the user convenience front, graphical interface for routing
logic needs to be provided. The proof of concept system
requires performance analysis on metrics for communication
between nodes and workflows, storage and retrieval and user
interface response. The workflow system needs to provide
a dashboard as a smart application and to be evaluated for
battery and processing requirements. A platform for creation,
publication and market store for workflow applications on
the general purpose system needs to be provided to enable
widespread use and to spin the wheel of micro-economy over
this open technology. Work is actively underway to provide
the features for suspend, resume, fork, join, broadcast need to
be provisioned in the proof of concept implementation.

REFERENCES

[1] A. Arsanjani, N. Bharade, M. Borgenstrand, P. Schume, J. K. Wood,
V. Zheltonogov et al., Business process management design guide: Using
IBM business process manager. IBM Redbooks, 2015.

[2] A. Corovié, V. 1li¢, S. uri¢, M. Marijan, and B. Pavkovi¢, “The real-
time detection of traffic participants using yolo algorithm,” in 2018 26th
Telecommunications Forum (TELFOR), 2018, pp. 1-4.

[3] B.S. H. Suri and K. Yeturu, “Pseudo rehearsal using non photo-realistic
images,” arXiv preprint arXiv:2004.13414, 2020.

[4] G. Alonso, C. Mohan, R. Giinthor, D. Agrawal, A. El Abbadi, and
M. Kamath, “Exotica/fmgm: A persistent message-based architecture for
distributed workflow management,” in Information Systems Development
for Decentralized Organizations. Springer, 1995, pp. 1-18.

[5] S. Ceri, P. Grefen, and G. Sanchez, “Wide-a distributed architecture for
workflow management,” in Proceedings Seventh International Workshop
on Research Issues in Data Engineering. High Performance Database
Management for Large-Scale Applications. 1EEE, 1997, pp. 76-79.

[6] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig, “Crossflow: Cross-
organizational workflow management in dynamic virtual enterprises,”
Computer Systems Science & Engineering, vol. 1, no. ARTICLE, pp.
277-290, 2000.

[71 G. Kappel, S. Rausch-Schott, and W. Retschitzegger, “A framework for
workflow management systems based on objects, rules and roles,” ACM
Computing Surveys (CSUR), vol. 32, no. les, pp. 27-es, 2000.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S. Rinderle, M. Reichert, and P. Dadam, “Adept workflow management
system: Flexible support for enterprise-wide business processes (tool
presentation),” in International Conference on Business Process Man-
agement, vol. 2678, 2003, pp. 371-379.

J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “Gridflow: Workflow
management for grid computing,” in CCGrid 2003. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003.
Proceedings. 1EEE, 2003, pp. 198-205.

T. Heinis, C. Pautasso, and G. Alonso, “Design and evaluation of an
autonomic workflow engine,” in Second International Conference on
Autonomic Computing (ICAC’05). 1EEE, 2005, pp. 27-38.

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
kepler system,” Concurrency and computation: Practice and experience,
vol. 18, no. 10, pp. 1039-1065, 2006.

A. Barker and J. Van Hemert, “Scientific workflow: a survey and
research directions,” in International Conference on Parallel Processing
and Applied Mathematics. Springer, 2007, pp. 746-753.

P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. Goble, “Data lineage
model for taverna workflows with lightweight annotation requirements,”
in International Provenance and Annotation Workshop. Springer, 2008,
pp- 17-30.

C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the use of cloud computing for scientific workflows,”
in 2008 IEEE fourth international conference on eScience. 1EEE, 2008,
pp. 640-645.

Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody,
and E. Deelman, “Wings: Intelligent workflow-based design of com-
putational experiments,” IEEE Intelligent Systems, vol. 26, no. 1, pp.
62-72, 2010.

P. Neophytou, P. K. Chrysanthis, and A. Labrinidis, “Confluence:
Continuous workflow execution engine,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of data, 2011,
pp. 1311-1314.

B. Linke, R. Giegerich, and A. Goesmann, “Conveyor: a workflow
engine for bioinformatic analyses,” Bioinformatics, vol. 27, no. 7, pp.
903-911, 2011.

J. Brzezifiski, A. Danilecki, J. Flotyriski, A. Kobusiniska, and
A. Stroiniski, “Workflow engine supporting restful web services,” in
Asian Conference on Intelligent Information and Database Systems.
Springer, 2011, pp. 377-385.

M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi,
and P. J. Maechling, “Enabling large-scale scientific workflows on
petascale resources using mpi master/worker,” in Proceedings of the
Ist Conference of the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the campus and beyond,
2012, pp. 1-8.

M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan,
C. Peters, A. Neumann, and A. Abdelnur, “Oozie: towards a scalable
workflow management system for hadoop,” in Proceedings of the Ist
ACM SIGMOD Workshop on Scalable Workflow Execution Engines and
Technologies, 2012, pp. 1-10.

K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher et al.,
“The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic acids research,
vol. 41, no. W1, pp. W557-W561, 2013.

A. Pradhan and R. K. Joshi, “Architecture of a light-weight non-
threaded event oriented workflow engine,” in Proceedings of the Sth
ACM International Conference on Distributed Event-Based Systems,
2014, pp. 342-345.

A. Mandal, P. Ruth, I. Baldin, Y. Xin, C. Castillo, G. Juve, M. Rynge,
E. Deelman, and J. Chase, “Adapting scientific workflows on networked
clouds using proactive introspection,” in 2015 IEEE/ACM 8th Interna-
tional Conference on Utility and Cloud Computing (UCC). 1EEE, 2015,
pp. 162-173.

W. Chen, R. F. da Silva, E. Deelman, and T. Fahringer, “Dynamic and
fault-tolerant clustering for scientific workflows,” IEEE Transactions on
Cloud Computing, vol. 4, no. 1, pp. 49-62, 2015.

R. Filgueira, R. F. Da Silva, A. Krause, E. Deelman, and M. Atkinson,
“Asterism: Pegasus and dispel4py hybrid workflows for data-intensive
science,” in 2016 Seventh International Workshop on Data-Intensive
Computing in the Clouds (DataCloud). 1EEE, 2016, pp. 1-8.

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

H. Nawaz, G. Juve, R. F. Da Silva, and E. Deelman, ‘“Performance
analysis of an i/o-intensive workflow executing on google cloud and
amazon web services,” in 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). IEEE, 2016,
pp- 535-544.

Y. Liu, S. M. Khan, J. Wang, M. Rynge, Y. Zhang, S. Zeng, S. Chen,
J. V. M. Dos Santos, B. Valliyodan, P. P. Calyam et al., “Pgen: large-
scale genomic variations analysis workflow and browser in soykb,” in
BMC bioinformatics, vol. 17, no. 13. BioMed Central, 2016, pp. 177—
186.

X. Li, J. Song, and B. Huang, “A scientific workflow management
system architecture and its scheduling based on cloud service platform
for manufacturing big data analytics,” The International Journal of
Advanced Manufacturing Technology, vol. 84, no. 1-4, pp. 119-131,
2016.

D. Krél, R. E. da Silva, E. Deelman, and V. E. Lynch, “Workflow per-
formance profiles: development and analysis,” in European Conference
on Parallel Processing. Springer, 2016, pp. 108-120.

R. F da Silva, R. Filgueira, 1. Pietri, M. Jiang, R. Sakellariou, and
E. Deelman, “A characterization of workflow management systems
for extreme-scale applications,” Future Generation Computer Systems,
vol. 75, pp. 228-238, 2017.

B. Tovar, R. F. da Silva, G. Juve, E. Deelman, W. Allcock, D. Thain,
and M. Livny, “A job sizing strategy for high-throughput scientific
workflows,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 2, pp. 240-253, 2017.

A. Mandal, P. Ruth, I. Baldin, R. F. Da Silva, and E. Deelman, “Toward
prioritization of data flows for scientific workflows using virtual software
defined exchanges,” in 2017 IEEE 13th International Conference on e-
Science (e-Science). 1EEE, 2017, pp. 566-575.

C. Simpkin, I. Taylor, G. Bent, G. de Mel, and R. Ganti, “A scalable
vector symbolic architecture approach for decentralized workflows,”
2018.

R. F da Silva, D. Garijo, S. Peckham, Y. Gil, E. Deelman, and
V. Ratnakar, “Towards model integration via abductive workflow compo-
sition and multi-method scalable model execution,” in 9th International
Congress on Environmental Modelling and Software, 2018.

P-C. Yang, S. Purawat, P. U. Ieong, M.-T. Jeng, K. R. DeMarco,
I. Vorobyov, A. D. McCulloch, I. Altintas, R. E. Amaro, and C. E.
Clancy, “A demonstration of modularity, reuse, reproducibility, portabil-
ity and scalability for modeling and simulation of cardiac electrophys-
iology using kepler workflows,” PLoS computational biology, vol. 15,
no. 3, p. e1006856, 2019.

R. Tomsett, G. Bent, C. Simpkin, I. Taylor, D. Harbourne, A. Preece,
and R. Ganti, “Demonstration of dynamic distributed orchestration of
node-red iot workflows using a vector symbolic architecture,” in 20719
IEEE International Conference on Smart Computing (SMARTCOMP).
IEEE, 2019, pp. 464-467.

E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F. da Silva, G. Pa-
padimitriou, and M. Livny, “The evolution of the pegasus workflow
management software,” Computing in Science & Engineering, vol. 21,
no. 4, pp. 22-36, 2019.

D. D. Sanchez-Gallegos, D. Di Luccio, J. L. Gonzalez-Compean, and
R. Montella, “Internet of things orchestration using dagon* workflow
engine,” in 2019 IEEE 5th World Forum on Internet of Things (WF-
IoT). IEEE, 2019, pp. 95-100.

E. Deelman, A. Mandal, M. Jiang, and R. Sakellariou, “The role of
machine learning in scientific workflows,” The International Journal of
High Performance Computing Applications, vol. 33, no. 6, pp. 1128-
1139, 2019.

A. Mujezinovi¢ and V. Ljubovi¢, “Serverless architecture for workflow
scheduling with unconstrained execution environment,” in 2019 42nd In-
ternational Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). 1EEE, 2019, pp. 242-246.
I. Altintas, S. Purawat, D. Crawl, A. Singh, and K. Marcus, “Toward
a methodology and framework for workflow-driven team science,”
Computing in Science & Engineering, vol. 21, no. 4, pp. 3748, 2019.
E. Deelman, R. F. da Silva, K. Vahi, M. Rynge, R. Mayani, R. Tanaka,
'W. Whitcup, and M. Livny, “The pegasus workflow management system:
Translational computer science in practice,” Journal of Computational
Science, p. 101200, 2020.

B. K. Joseph and O. Mosweu, “Integrating document workflow man-
agement system in the business processes of a public institution.”
“Apache airflow,” https://airflow.apache.org.

https://airflow.apache.org

Feature number Feature name Abbreviation
1 Domain Agnosticism DA
2 Content based Routing CR
3 Dynamic Routing DR
4 Flow Mutation M
5 Node Reuse NR
6 Rendering as a Service RS
7 Distributed/Scalable Systems DS
8 User interface Node UN
9 Computational Node CN
10 Web API WA
11 Light Weight LW
12 Internet of things Enabled IE
13 Communication Security CS
14 Node Publication NP

TABLE T

WE HAVE IDENTIFIED 14 IMPORTANT FEATURES IN ANY WORKFLOW SYSTEM THAT ARE CRITICAL TO ITS WIDE SPREAD USE, SCALABILITY AND
FLEXIBILTY WHICH ARE DEPICTED IN THE TABULATION HERE.

S.No Reference Remark 1123|456 |7|8]|9]| 10| 11|12 | 13 | 14 | Feature coverage
1. [41 Distributed Workflow 1{o|1]O0lO0O|O]1]O0]1 0 1 0 1 1 50%
2. (50 Distributed Workflow ojfofo|loflO|lO|1|O]|O 1 1 0 1 0 29%
3. [61 Cross Organizational OO0 |1 |01]O 1100 0 1 0 1 1 43%
4. [71 Object, Rules and Roles 101 [0]0]O0O|O0O]O0]|O 0 1 0 1 0 29%
5. (8] Flexible Support Oj(o0[1 0[O0 11010 0 1 0 1 1 43%
6. (9] Grid Computing 0100|000 1{1]0] O 1 0 1 1 43%
7. [10] Evaluation of Autonomic o100]O]O]1]0]|O 0 1 0 1 1 36%
8. (1] Scientific Workflow oj(oflO0|O0]|1 1111 0 1 0 1 1 57%
9. 112] Scientific Workflow O[O0l O[O[O]O]O]1]T1 0 0 0 1 0 21%

10 . 113] Lightweight ojfofojlOoOflOlO|T1T]O]|T1 0 1 1 1 0 36%
11. 114] Scientific Workflow ojfofojlOflO|lO|T1T]O]|T1 0 0 0 1 1 29%
12. 115] Intelligent Workflow 1r/fojojojojOo]TL]O0]T1 0 0 0 1 0 29%
13. [16] Continuous Workflow 010100710 1100 1 0 0 1 1 36%
14. 117] Bioinformatic Analyses O0lO0lO0O]O0O]O0O]1T]0]O0 1 0 0 0 0 14%
15. 18] Restful Web Services 1100|0101]0]O0 1 0 0 1 0 36%
16. [19] Scientific Workflow ojfofo|lOflO|lO|T1T]O]|T1 0 0 0 1 0 21%
17. [20] Hadoop ojofo|lOflO|O|T1T]O]|1 0 0 0 1 0 21%
18. [21] Nucleic Acids Research O[O0 |O0O O] T]O]1T]O0]|1 1 0 0 0 1 36%
19. 122] Event-oriented Workflow o000l O0O]O]O0O]1T]0]O0 0 1 0 1 0 21%
20. 23] Scientific Workflow ojof1|lO0OlO|O|T1]O]|1 0 0 0 0 0 21%
21. [24] Scientific Workflow O[O0 |O0O|O]O]O]1T]O0]1 0 0 0 0 0 14%
22. 125] Data Intensive O|0[O0O]O0O|O]O]1T]O0]1 0 0 0 0 0 14%
23. [26] 1/0O Intensive ojofo|lOflO|O|T1]O]|1 0 0 1 1 0 29%
24. [27]] Generation Sequencing 010 (0O [O0O]O|T1]O0]|1 1 0 0 1 1 36%
25. 28] Scientific Workflow 110]JO0O]O]O]O]T1T]0O0]1 1 0 0 0 0 29%
26. 129] Workflow Performance Profile 171000001010 0 0 0 1 0 21%
27. [30] Extreme-Scale applications Oj(ofojO0OlO|O|1T |11 0 0 0 0 1 29%
28. 131] Job-Sizing Strategy 100 |O0O]O]O]T|O]O0] O 1 0 0 0 21%
29. 132] Scientific Workflows 110 1]0]0]O0O]O0O]O0O]O0] O 0 0 0 0 14%
30. 133] Decentralized Workflows OO0 O |O0O]O0O]O0]1 1 1 0 0 0 1 1 36%
31. 134] Workflow composition Oo|lo0olO0OlO]O]O]1T]0]|O0 0 0 0 1 0 14%
32. [135]] Medical Workflows ojofo|loOf|1|lO|1T|O|O]| O 0 0 0 0 14%
33. 136] TIoT Workflows ojof1|lO0OflO|O|1|1]1 0 0 1 1 1 50%
34, 1371 Pegasus Workflow ojofojlofloO|lO|1T|O|O]| O 0 0 1 0 14%
35. 138] TIoT Workflows ojofo|lofO|lO|1T|O|O]| O 0 0 1 0 14%
36. 139] Machine Learning ojofojloflO|lO|1T|O|O]| O 0 0 1 0 14%
37. [40] Workflow Scheduling ojofojloflO|lO|O|O|O]| O 0 0 1 0 7%
38. [41] Scientific workflows ojofo|lOflO|lO|O|O|1 1 0 0 1 1 29%
39. 142] Translational Scientific Workflow | O | O | O | O [O | O | 1] O | O 0 0 0 0 0 7%
40. [43] Business Workflow ojofojloOflO|lO|1T|O|O]| O 1 0 0 0 14%
41. [44] Airflow rfojr{ojojo]1|{1]0] O 0 0 1 0 36%
42. Proposed Workflow General Purpose Workflow 1|1]1 1 1111 1 1 1 1 1 100%

TABLE I

A COMPREHENSIVE COMPARISON OF STATE OF THE ART ALGORITHMS WITH RESPECT TO THE 14 ASPECTS OF ANY WORKFLOW SYSTEM. HERE 0
MEANS, THE FEATURE IS NOT ADDRESSED AND | MEANS IT IS ADDRESSED BY THE CORRESPONDING METHOD. Flow mutation 1S NOT IMPLEMENTED IN
ANY OF THE EXAMINED SYSTEMS. THE CONCEPT OF rendering as a service WHICH USE INTRODUCED IN OUR SYSTEM, IS A RECENT PHENOMENON IN

THE STATE OF THE ART AND ONLY SEEN IN ABOUT 6 SYSTEMS OUT OF 42 SYSTEMS STUDIED.

	Abstract
	Introduction
	Methods
	Formal representation and reasoning
	Schematic of the system
	Distributed workflow system
	Provision for compensatory workflows
	Proof of concept using Python and Flask

	Results
	Lightweight implementation
	Novel architecture - Messaging mutation by coordinator and Rendering as a service
	Rendering as a service
	Computational nodes
	General framework of machine learning models - Model Service, Data Service, Control Service
	Examples of computational codes

	Conclusions and future directions
	References

