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Abstract—

Neural networks suffer from Catastrophic forgetting problem when deployed in a continual learning scenario. Pseudo rehearal is a
technigue where a generator is used to synthetically generate training data of the previous task to retrain the neural network to prevent
forgetting. Edge devices usually have severe computational and memory constraints which limits the deployment of pseudo rehearsal
schemes directly on them. In this work, we demonstrate a continual learning system that deploys the generator on a server and regularly
updates the neural networks deployed on the edge whenever required.

Index Terms—Continual Learning, Workflow systems, Catastrophic forgetting, Neural Networks.

1 INTRODUCTION

Recent advancements in deep neural networks have
demonstrated near-human abilities while solving tasks re-
quiring complex cognitive capabilities [1]. It is clear that
wider adoption of deep neural networks will prove to be
beneficial in terms of obtained applications and economics.
However, current neural networks require significant com-
putational resources and are usually deployed on the cloud.
With the rising computational power of edge devices, de-
ployment of neural networks on them will allow for wider
adoption of this technology. In this work, we propose a
system to pseudo-rehearse a neural network to manage the
catastrophic forgetting problem that might arise in networks
deployed at edge. We propose an architecture where the
neural network deployed at the edge is only responsible for
inferencing while the synthetic data generation is done on
cloud with higher hardware capabilities.

1.1 Catastrophic forgetting problem

In continual learning scenario, where neural networks are
expected to learn new batches of data sequentially, neural
networks suffer from catastrophic forgetting problem, where
they forget previously learnt information after being trained
on a new batch of data [2]. When trained on a new batch
of data from a significantly different data distribution, the
weights of the neural network tend to change resulting in
distortion of the learned decision boundary. This distortion
of the boundary leads to forgetting of the previously learnt
information. The problem has been well studied and many
solutions have been proposed to address this issue [3].

1.2 Rehearsal and Pseudo rehearsal

Rehearsal and Pseudo-rehearsal are two concepts proposed by
[4], where the neural network is retrained on the original
or synthetic version of previous data while learning a new

o All the authors were with the Computer Science and Engineering Depart-
ment, Indian Institute of Technology Tirupati, Andhra Pradesh, India.
E-mail: {CS17B032, C5185506, ykalidas}@iittp.ac.in .

batch of data. Generative replay [5] and Genetic rehearsal
[6] are examples of techniques using the concept of pseudo
rehearsal where synthetic data of the previous task is gener-
ated using Generative Adversarial Networks (GAN) [7] or
Genetic Algorithms.

1.3 Edge Al

Currently, deep learning networks are deployed on the
cloud servers because of their computational requirements
[8]. Any edge device requiring the service of the model
sends a service-request to the cloud, which in-turn responds
with the requested service. However, such kind of archi-
tectures cannot be deployed in scenarios where there is a
strict constraint on the latency. For example, in applications
like autonomous cars, smart surveillance [9] or smart man-
ufacturing, the model is required to take quick decisions to
avoid damage to any involved parties. When the model is
deployed on the cloud, the delay in transmission of data
between the edge device and the cloud service could result
in sub-optimal performance of the system. To avoid such
latencies, a better solution would be to utilize the increasing
computational powers of the edge devices and deploy the
machine learning models on the edge. Increasing adoption
of Al Hardware accelerators like Qualcomm Snapdragon
8 series [10], Google TPUs [11], Intel Xeon D-2100 [12] or
NVIDIA Turing GPUs [13] by edge devices has resulted
in increase of capabilities to host deep neural networks on
them. Popular deep learning packages like Tensorflow [[14]
released libraries that aim to deploy fully trained neural
network on edge devices. Despite witnessing an increase,
edge devices still have smaller computational and memory
resources compared to server hardware deployed at the
cloud. A smarter architecture would use a smart combina-
tion of cloud and edge hardwares to optimize performance
as well as reduce latency. Neural networks that are deployed
to edge devices can expected to only perform inferences
while carrying out the training steps on the cloud with
hardware accelerators like GPU or TPU.
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Fig. 1: Figure |1a| shows the concept of pseudo rehearsal. The synthetic data of previous batch is generated using a data
generator using Gaussian mixture models or Generative Adversarial Networks and interleaved with the newly arrived
training data. Figure [Ib|shows the interactions between the Controller and the database containing the original data.

In this work, we specifically address the continual learn-
ing scenario where the deployed model is expected to learn
new batches of data from different data distributions, with-
out forgetting previously learnt information. As suggested
in the concept of pseudo rehearsal, hosting a separate gen-
erator network to synthetically generate data on demand
might reduce or prevent forgetting of previous information.
However, despite of increase in computational capabilities
of edge devices, hosting an additional generator network
on the edge device might be a sub-optimal solution as it
might consume additional power, resulting in decreased
work time of the edge device.

In this work, we demonstrate a scalable, modular and
platform agnostic software workflow that provides effective
management of synthetic data generation by connecting the
generators on the servers with neural networks deployed at
the edge.

1.4 Our Contributions

o Proposed a novel model management scheme for
neural networks deployed on edge in a continual
learning scenario.

e Introduced an easy-to-scale, flexible, production
grade workflow system software for managing neu-
ral networks on edge.

2 METHODS
2.1 Remote Data Generation (RDG) architecture

We propose a scalable and flexible system to implement syn-
thetic data generation as a service in this work. The architec-
ture is called Remote Data Generation (RDG) architecture
and it consists of a Data service, Prediction service, Training
service, and Controller service. The interactions between the
above mentioned services is orchestrated by the workflow
system. Two types of nodes are possible in this workflow:
User-Interface (UI) nodes such as the controller, where the
parameters of the model are configured, and computational
nodes such as Prediction service, Training service, Data service.
The role of each service is as follows.

2.1.1 Prediction-service

The prediction services’ primary function is to generate
predictions for given input data using the deployed neural
network. In case of a federated learning setting, the pre-
diction service could be running on the edge device. And
in case of a centralized setting, the prediction service also
could be running on the cloud using a copy of the deployed
neural network to improve latency times. The prediction
service plays an integral role when generating synthetic data
using Genetic Algorithms. The synthetic data is generated
by constant interactions between the data service and the
prediction service.

2.1.2 Data service

Data Service’s primary function is to generate synthetic
data or provide original data for retraining neural networks
deployed on edge devices. It takes labels or class as input
and produces respective data as output. The data service
could consist of a data generator like GAN, GMM or Genetic
Algorithms or could be a database consisting of original
data directly.

2.1.3 Training-service

Training-service is designed to retrain the model using the
synthetic-data generated by Data service. It updates the
model, and that updated version can be deployed to the
edge devices. One significant advantage of implementing
a separate microservice for training the neural networks
is that, while other services can be deployed on cheaper
hardware with low computational capabilities, the training
service can be deployed on specialized hardware that are
optimized for training processes.

2.1.4 Workflow system

The workflow system is responsible for controlling the flow
of information between various microservices in the system.
The system continuously polls for any messages in the
Workflow Database. As soon as any new message arrives, it
routes the incoming message from one node to another node
after evaluating it. The system can modify the messages in
between which allows for content-based routing in the
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Fig. 2: Block diagram showing the Genetic Rehearsal implementation of the proposed system. Figure shows the
interaction between controller and the database via the workflow system when generating synthetic data using Genetic
Algorithms. Figure @] shows the retraining process of the system after synthetic data has been generated.

architecture. Also, the routing logic for the workflow
system can be dynamically imported.

To demonstrate the flexibility offered by the proposed
Remote Data Generation architecture, we implemented vari-
ous data generators like Generative Adversarial Networks
(GAN), Genetic Algorithm and Gaussian Mixture model as
the Data service. In addition, we also implemented an original
data as-a-service architecture, where the original data is
stored in the cloud and a subset of it is requested for the
purpose of pseudo-rehearsal.

2.2 Original data as-a-service

[4] proposed the concept of Rehearsal, where the neural
network is trained on original data of the previous task to
prevent catastrophic forgetting. However, storing of entire
previous data requires allocation of considerable memory
resources which is not feasible for edge devices. Therefore,
by deploying the original data on the cloud as-a-service and
then requesting the subset of it according to the need of
the deployed model might be an optimal solution. The pro-
posed architecture can be used in both federated learning

[15] setting where each deployed model is personalized
according to the user, or a centralised setting where a central
controller periodically pushes one uniform model to all
the edge devices. Figure depicts a centralised setting
where a human controller initiates the request for data.
The controllers request is routed to the workflow, which
inturn raises a request with the original data service. The
data service returns the requested data to the workflow
system which routes it to the controller. The controller is
then presented with a choice whether to re-train the model
on it or not. If the controller chooses to retrain the model, the
synthetic data is passes to the training service which loads
the model and retrains it. This retrained network can be
considered as the upgraded model which is then pushed
to edge devices for deployment. In contrast, in a federated
learning setting, the retrain service is present on the edge
device itself, where the deployed model is retrained and
then deployed.

2.3 Genetic Algorithm as a Data Generator

This is an micro-service style implementation of the system
proposed by [6], where synthetic data is generated by a
series of communications between Genetic Algorithms and
the deployed neural network. To generate the synthetic
data for a target class, the Genetic Algorithm begins with a
random set of images which are then given to the deployed
network for prediction. The softmax confidence of the net-
work on these images for the target class is considered as
their fitness scores. The fittest 24% individuals are sent to
the next generation, where a series of mutation and cross-
over operation are followed to populate the next generation.
This is repeated until the organisms of a given generation
reach a certain fitness threshold.

To implement this technique, we implemented a Genetic
Algorithm as the generator service, which we refer to as GA
service here on. The GA service generates synthetic images
and sends them to the prediction service via the workflow.
The prediction service predicts the score using the deployed
model and returns it to the workflow system. GA service
uses the predicted scores to generate a new batch of images.
The controller specifies the number of generations up to which
the service should generate images. Each generation will
generate images where the fitness of population is greater
than previous generation’s.

Figure [2a| shows the steps involved in generating syn-
thetic data from a time and event perspective. GA service
and prediction services are computational nodes, and the
controller is a user-interface (UI) node. A step-wise list of
interactions between the services is provided below:

o STEP 1: At time step T, the controller node requests
to begin the training via workflow and the GA ser-
vice generates the first batch of images.

e STEP 2: At T3, images or synthetic samples that are
generated by the GA service are sent to Prediction
Service via the workflow.

e STEP 3: At T3, the Prediction service receives the
images and then returns the prediction scores for all
the images.
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Fig. 3: The block diagram shows the interactions between various services when either Gaussian Mixture models or
Generative Adversarial Networks are used as Data services. Unlike in the case of using Genetic Algorithm to generate
synthetic data, here the number of interactions between microservices in relatively lower.

e STEP 2 and 3 are repeated until a certain fitness
threshold is reached or until the number of iterations
is finished.

e STEP N-2: At Tv_o, the score for each synthetic
sample is sent to the GA service.

o STEP N-1: At Ty _1, the GA Service realising that the
fitness threshold has been reached will send the final
synthetic data to the controller via the workflow.

o STEP N: At time step T, the workflow routes the
synthetic data to the controller and message is sent
to GA service to stop the training.

All the request which happen between nodes/services
and workflow happen as post requests and data flows
as JSON objects. An independent session is opened be-
tween the GA service and prediction service to increase
the throughput of the system by allowing simultaneous
executions for multiple systems.

Figure [2b| shows the steps involved after this synthetic
data is received by the controller from the workflow. The
controller has two jobs to do: (1)To start the session; (2)
To evaluate the quality of the synthetic data generated.
After receiving the synthetic data, the controller is presented
with an option to whether or not retrain the model on this
new synthetic data. On being satisfied with the quality of
the generated data, the controller can push the synthetic
data along with the command to “retrain” the model to
the workflow system. The workflow system then routes the
synthetic data to the Training service.

A copy of the synthetic data sent is also sent to the data

backup service that stores the synthetic data for future use.
If the generated images’ fitness score is not high enough,
then the controller instructs the workflow (by setting the
message “delete_data”) to delete the synthetic data. Training
service will retrain the model based on the synthetic data
and upgrade the model. Now this upgraded model can be
sent to edge devices for deployment.

2.4 GAN as a Data Generator

[5] suggested use of Generative Adversarial Networks
(GANSs) as generators to generate synthetic data. In this
technique, instead of storing the original data, a Generative
Adversarial Network is trained until it can synthetically
recreate the original data. This fully trained GAN is stored
in a database and the original data is then discarded. This
technique greatly saves space as storing a GAN consumes
much lesser space compared to storing entire original data.
In the beginning of the process, the controller sends the
request to workflow with the required target labels as shown
in Figure |3 The workflow system then sends the request
to data service which in this case has a GAN in it. The
request is send as a JSON object which has message field
with various flags and variables that describe the desired
properties of the synthetic data. Data service then generates
the synthetic images upon request and sends back to the
workflow system. Since the data generated by GAN is
unlabelled, the workflow system sends the synthetic data
to the prediction service where it predicts the labels of
the generated samples. These predictions are sent back to
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the workflow. The workflow system finally filters out the
samples belonging to the target classes based on the newly
generated labels and sends these samples to the controller
for retraining.

2.5 GMM as Data Generator

In a Gaussian Mixture model, the dataset is assumed as
a collection of n Gaussians. A Gaussian Mixture Model
can also be used as a data generator for pseudo rehearsal.
Just like using GAN as a generator, using of GMM as
a generator follows a similar process. The controller first
initiates a request to generate samples of the target classes
with the workflow. The workflow sends a command to
the GMM which is in the data service, to start generat-
ing synthetic data. The data service responds back to the
workflow system with the synthetic data. As the synthetic
data is unlabelled, the workflow systems sends the data to
the prediction service which labels the data. The workflow
system uses these labels to filter out the samples belonging
to the target classes and sends them to the controller.

2.6 Implementation Details

The proposed system was implemented completely in
Python language, however, it has to be noted that the user
is free to implement any of web-services using a different
as the proposed system is platform agnostic. Flask library
[16] was used to build and deploy all the web-services while
Requests library was used to implement the HTTP POST and
GET requests. Numpy [17] was used to represent and gen-
erate synthetic data throughout the system. Representing
the data using Numpy arrays allows us to use the system
in non-image applications as well. MongoDB was used to
implement all the databases in the system. The reason for
selecting MongoDB over SQL is that JSON objects were used
to transmit data between different services in our workflow.
As SQL has static table-oriented design where the colums
of the table have to be predefined, inserting JSON objects
with varying sizes is not possible. As MongoDB is the
NO-SQL database with little restrictions over the structure
of the database, JSON objects with varying sizes can be
inserted into MongoDB with ease. This flexibility offered
by MongoDB influenced our decision to select it over an
SQL based database. Pymongo library was used to connect
the webservices with the Mongo Database.

All the neural networks were developed in Keras [18]
with Tensorflow [19] running in the back-end. The Gaussian
Mixture Model was implemented in Sklearn [20]. The sys-
tem was tested on MNIST Digits [21] and MNIST Fashion
[22] datasets which were available as a standard dataset in
Keras.

The experimentation was carried out on a network of
three systems with Intel Core i7 Quadcore. The three sys-
tems had 7.7GB, 7.7GB and 16GB of available RAM space.
The systems were connected using a Wi-Fi (802.11n) router
with a link speed of 150Mbps between each system and the
router. All the micro-services were launched on different
systems.

Transactions on Services Computing

3 EXPERIMENTS AND RESULTS

Inorder to test the proposed architecture, we created a
continual learning scenario, where the data generator is
expected to synthetically generate requested data for MNIST
Digits dataset. Genetic Rehearsal, Generative Replay and
Gaussian Mixture models were used as data generators.
Variables like transmission latency, generation latency and
amount of data being transferred between micro-services
were systematically measured for all the above proposed
schemes. In addition, the original data as-a-service model
was also implemented and all the above mentioned param-
eters were obtained for them.

When Genetic Algorithm was implemented as data ser-
vice, the transmission time between the data service and
workflow was less than 2 seconds. The interaction between
workflow system and prediction service again took less
than 2 seconds. The size of each generation was 8, so a
total of 8 images of size 28x28 were exchanged between the
Data service and prediction service during synthetic data
evolution. This meant that approximately 3KB of data was
exchanged per interaction. It has to be noted that we used
a standard Wi-fi router to connect all the systems in our
experimental setup. The latency of the system is influenced
by the link speed between the router and the system. Usage
of LAN based network to connect the systems will greatly
improve the latency times. For MNIST digits, approximately
5 generations of evolution is required to generate data for
one class. As 30 cultures are usually used, a total of 150
interactions happen between the data service, workflow
system and the prediction service. This means that it takes
approximately 12.5 minutes to generate synthetic data for
one single class.

In scenarios like original data as-a-service and
GMM/GAN as data generators, the number of interactions
between the modules are significantly less. There is only one
iteration of interaction between the data service, workflow
system and prediction service which brings the total com-
munication latency time to less than 5 seconds. However,
since the synthetic data that is generated is transported from
data service to the workflow and then to the prediction ser-
vice, the transmission time is influenced by the transmission
capacities of the network on which the user implements the
proposed system.

4 DISCUSSIONS

In this work, we demonstrated a scalable, modular and
platform agnostic workflow system for maintaining models
deployed on edge devices in a continual learning setting.
The proposed system could easily be adopted to a federated
learning setting where there are personalized machine learn-
ing models deployed on the edge devices or a centralized
setting where one network is periodically updated and
pushed to large number of edge devices by just altering
the deployment of the prediction services. Protecting these
workflow systems from cyber-security threats is essential
for the well being of all the involved parties. In our future
works, we would like to implement end-to-end encryption
of communication between all the webservices. We would
also like to test the proposed architecture by actually de-
ploying the neural networks on edge device like Raspeberry
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Pi and measuring the real world latencies and energy con-
sumption of the proposed system.

5

CONCLUSION

In this work we demonstrated a scalable continual learning
workflow system to maintain neural networks deployed
on edge devices. Various kinds of data generation schemes
were implemented as a service to generate synthetic data for
pseudo rehearsal.
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